Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.644
Filtrar
1.
PLoS Comput Biol ; 20(3): e1011931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483975

RESUMO

Plasmodium vivax is one of the most geographically widespread malaria parasites in the world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the significant characteristics of the P. vivax parasite is its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. Models that capture P. vivax dynamics differ from those that capture P. falciparum dynamics, as they must account for relapses caused by the activation of hypnozoites. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023. The primary objective of this work is to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. In doing so, we aim to assist researchers working on mathematical epidemiology, disease transmission, and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where further model development is required. We categorise P. vivax models according to whether a deterministic or agent-based approach was used. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity in susceptibility to infection, the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Parasitos , Superinfecção , Animais , Humanos , Plasmodium vivax , Modelos Teóricos , Recidiva
2.
Vaccine ; 42(9): 2394-2406, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38448321

RESUMO

Malaria caused byPlasmodium vivaxis a pressing public health problem in tropical and subtropical areas.However, little progress has been made toward developing a P. vivaxvaccine, with only three candidates being tested in clinical studies. We previously reported that one chimeric recombinant protein (PvCSP-All epitopes) containing the conserved C-terminus of the P. vivax Circumsporozoite Protein (PvCSP), the three variant repeat domains, and aToll-like receptor-3 agonist,Poly(I:C), as an adjuvant (polyinosinic-polycytidylic acid, a dsRNA analog mimicking viral RNA), elicits strong antibody-mediated immune responses in mice to each of the three allelic forms of PvCSP. In the present study, a pre-clinical safety evaluation was performed to identify potential local and systemic toxic effects of the PvCSP-All epitopes combined with the Poly-ICLC (Poly I:C plus poly-L-lysine, Hiltonol®) or Poly-ICLC when subcutaneously injected into C57BL/6 mice and New Zealand White Rabbits followed by a 21-day recovery period. Overall, all observations were considered non-adverse and were consistent with the expected inflammatory response and immune stimulation following vaccine administration. High levels of vaccine-induced specific antibodies were detected both in mice and rabbits. Furthermore, mice that received the vaccine formulation were protected after the challenge with Plasmodium berghei sporozoites expressing CSP repeats from P. vivax sporozoites (Pb/Pv-VK210). In conclusion, in these non-clinical models, repeated dose administrations of the PvCSP-All epitopes vaccine adjuvanted with a Poly-ICLC were immunogenic, safe, and well tolerated.


Assuntos
Carboximetilcelulose Sódica/análogos & derivados , Vacinas Antimaláricas , Malária Vivax , Polilisina/análogos & derivados , Camundongos , Animais , Coelhos , Malária Vivax/prevenção & controle , Poli I-C , Plasmodium vivax , Proteínas de Protozoários/genética , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Proteínas Recombinantes , Epitopos , Anticorpos Antiprotozoários
3.
Commun Biol ; 7(1): 355, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519588

RESUMO

Plasmodium vivax lactate dehydrogenase (PvLDH) is an essential enzyme in the glycolytic pathway of P. vivax. It is widely used as a diagnostic biomarker and a measure of total-body parasite biomass in vivax malaria. However, the dynamics of PvLDH remains poorly understood. Here, we developed mathematical models that capture parasite and matrix PvLDH dynamics in ex vivo culture and the human host. We estimated key biological parameters characterising in vivo PvLDH dynamics based on longitudinal data of parasitemia and PvLDH concentration collected from P. vivax-infected humans, with the estimates informed by the ex vivo data as prior knowledge in a Bayesian hierarchical framework. We found that the in vivo accumulation rate of intraerythrocytic PvLDH peaks at 10-20 h post-invasion (late ring stage) with a median estimate of intraerythrocytic PvLDH mass at the end of the life cycle to be 9.4 × 10-3ng. We also found that the median estimate of in vivo PvLDH half-life was approximately 21.9 h. Our findings provide a foundation with which to advance our quantitative understanding of P. vivax biology and will facilitate the improvement of PvLDH-based diagnostic tools.


Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Malária Vivax/diagnóstico , L-Lactato Desidrogenase , Teorema de Bayes
4.
Malar J ; 23(1): 76, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486245

RESUMO

BACKGROUND: Malaria remains a significant cause of morbidity and mortality in Ethiopia with an estimated 3.8 million cases in 2021 and 61% of the population living in areas at risk of malaria transmission. Throughout the country Plasmodium vivax and Plasmodium falciparum are co-endemic, and Duffy expression is highly heterogeneous. The public health significance of Duffy negativity in relation to P. vivax malaria in Ethiopia, however, remains unclear. This study seeks to explore the prevalence and rates of P. vivax malaria infection across Duffy phenotypes in clinical and community settings. METHODS: A total of 9580 and 4667 subjects from community and health facilities from a malaria endemic site and an epidemic-prone site in western Ethiopia were enrolled and examined for P. vivax infection and Duffy expression from February 2018 to April 2021. Association between Duffy expression, P. vivax and P. falciparum infections were examined for samples collected from asymptomatic community volunteers and symptomatic subjects from health centres. RESULTS: Infection rate of P. vivax among Duffy positives was 2-22 fold higher than Duffy negatives in asymptomatic volunteers from the community. Parasite positivity rate was 10-50 fold higher in Duffy positives than Duffy negatives among samples collected from febrile patients attending health centres and mixed P. vivax and P. falciparum infections were significantly more common than P. vivax mono infections among Duffy negative individuals. Plasmodium vivax parasitaemia measured by 18sRNA parasite gene copy number was similar between Duffy positives and Duffy negatives. CONCLUSIONS: Duffy negativity does not offer complete protection against infection by P. vivax, and cases of P. vivax in Duffy negatives are widespread in Ethiopia, being found in asymptomatic volunteers from communities and in febrile patients from health centres. These findings offer evidence for consideration when developing control and intervention strategies in areas of endemic P. vivax and Duffy heterogeneity.


Assuntos
Malária Falciparum , Malária Vivax , Humanos , Plasmodium vivax/genética , Malária Vivax/epidemiologia , Etiópia/epidemiologia , Saúde Pública , Malária Falciparum/epidemiologia , Febre , Instalações de Saúde
5.
Front Cell Infect Microbiol ; 14: 1354880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465236

RESUMO

Plasmodium vivax, the most widespread human malaria parasite, and P. knowlesi, an emerging Plasmodium that infects humans, are the phylogenetically closest malarial species that infect humans, which may induce cross-species reactivity across most co-endemic areas in Southeast Asia. The thrombospondin-related anonymous protein (TRAP) family is indispensable for motility and host cell invasion in the growth and development of Plasmodium parasites. The merozoite-specific TRAP (MTRAP), expressed in blood-stage merozoites, is supposed to be essential for human erythrocyte invasion. We aimed to characterize MTRAPs in blood-stage P. vivax and P. knowlesi parasites and ascertain their cross-species immunoreactivity. Recombinant P. vivax and P. knowlesi MTRAPs of full-length ectodomains were expressed in a mammalian expression system. The MTRAP-specific immunoglobulin G, obtained from immune animals, was used in an immunofluorescence assay for subcellular localization and invasion inhibitory activity in blood-stage parasites was determined. The cross-species humoral immune responses were analyzed in the sera of patients with P. vivax or P. knowlesi infections. The MTRAPs of P. vivax (PvMTRAP) and P. knowlesi (PkMTRAP) were localized on the rhoptry body of merozoites in blood-stage parasites. Both anti-PvMTRAP and anti-PkMTRAP antibodies inhibited erythrocyte invasion of blood-stage P. knowlesi parasites. The humoral immune response to PvMTRAP showed high immunogenicity, longevity, and cross-species immunoreactivity with P. knowlesi. MTRAPs are promising candidates for development of vaccines and therapeutics against vivax and knowlesi malaria.


Assuntos
Malária Vivax , Malária , Parasitos , Plasmodium , Animais , Humanos , Plasmodium vivax/genética , Parasitos/metabolismo , Merozoítos , Trombospondinas/metabolismo , Plasmodium/metabolismo , Malária/parasitologia , Malária Vivax/parasitologia , Proteínas de Protozoários/metabolismo , Mamíferos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38397717

RESUMO

BACKGROUND: The first-line diagnosis of malaria in Mali is based on the use of rapid diagnostic tests (RDT) that detect the Histidin Rich Protein 2 (HRP2) antigen specific to Plasmodium falciparum. Our study, based on a real-time polymerase chain reaction (qPCR) gold standard, aimed to describe the distribution of the Plasmodium species in each administrative region of Mali and to assess the performance of RDTs. METHODS: We randomly selected 150 malaria-negative and up to 30 malaria-positive RDTs in 41 sites distributed in 9 regions of Mali. DNA extracted from the RDT nitrocellulose strip was assayed with a pan-Plasmodium qPCR. Positive samples were then analyzed with P. falciparum-, P. malariae-, P. vivax-, or P. ovale-specific qPCRs. RESULTS: Of the 1496 RDTs, 258 (18.6%) were positive for Plasmodium spp., of which 96.9% were P. falciparum. The P. vivax prevalence reached 21.1% in the north. RDT displayed acceptable diagnostic indices; the lower CI95% bounds of Youden indices were all ≥0.50, except in the north (Youden index 0.66 (95% CI [0.44-0.82]) and 0.63 (95% CI [0.33-0.83]. CONCLUSIONS: Overall, RDT diagnostic indices are adequate for the biological diagnosis of malaria in Mali. We recommend the use of RDTs detecting P. vivax-specific antigens in the north.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium , Humanos , Testes de Diagnóstico Rápido , Mali/epidemiologia , Plasmodium vivax/genética , Testes Diagnósticos de Rotina , Sensibilidade e Especificidade , Malária/diagnóstico , Plasmodium/genética , Malária Vivax/epidemiologia , Malária Falciparum/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real
7.
J Infect Dis ; 229(4): 947-958, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38324758

RESUMO

BACKGROUND: Malarial infections are often missed by microscopy, and most parasite carriers are asymptomatic in low-endemicity settings. Whether parasite detectability and its ability to elicit symptoms change as transmission declines remains unclear. METHODS: We performed a prospective panel survey with repeated measurements on the same participants over 12 months to investigate whether Plasmodium vivax detectability by microscopy and risk of symptoms upon infection varied during a community-wide larviciding intervention in the Amazon basin of Brazil that markedly reduced vector density. We screened 1096 to 1400 residents in the intervention site for malaria by microscopy and quantitative TaqMan assays at baseline and twice during intervention. RESULTS: We found that more P vivax infections than expected from their parasite densities measured by TaqMan assays were missed by microscopy as transmission decreased. At lower transmission, study participants appeared to tolerate higher P vivax loads without developing symptoms. We hypothesize that changes in the ratio between circulating parasites and those that accumulate in the bone marrow and spleen, by avoiding peripheral blood microscopy detection, account for decreased parasite detectability and lower risk of symptoms under low transmission. CONCLUSIONS: P vivax infections are more likely to be subpatent and remain asymptomatic as malaria transmission decreases.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Malária Vivax/parasitologia , Brasil/epidemiologia , Estudos Prospectivos , Malária Falciparum/parasitologia , Prevalência , Plasmodium vivax , Plasmodium falciparum
8.
Am J Trop Med Hyg ; 110(4): 639-647, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38377613

RESUMO

Malaria remains a major public health problem in Papua New Guinea (PNG) and an important force health protection issue for both PNG and Australian Defence Forces. To investigate the malaria burden in the military and civilians residing on military bases, a cross-sectional survey was conducted in April 2019 at three military bases in Wewak, Manus Island, and Vanimo, PNG. A total of 1,041 participants were enrolled; 235 military personnel from three bases and 806 civilians from Wewak and Vanimo. Polymerase chain reaction (PCR) revealed an overall high prevalence of Plasmodium infection in both the military and civilians. Among the military, the infection prevalence was significantly higher in Wewak (35.5%) and Vanimo (33.3%) bases than on Manus Island (11.8%). Among civilians, children (<16 years old) had significantly higher odds of being PCR positive than adults (≥16 years old). At Wewak and Vanimo, Plasmodium vivax accounted for 85.4%, 78.2%, and 66.2% of infections in military, children, and adult populations. Overall, 87.3%, 41.3%, and 61.3% of Plasmodium infections in the military, children, and adults, respectively, were detected only by PCR, not by microscopy (submicroscopic [SM] infections). Children had a significantly lower proportion of SM infections than adults and Papua New Guinea Defence Force personnel. Infection status was not associated with hemoglobin levels in these populations at the time of the survey. Mutant kelch13 (C580Y) parasites were identified in 5/68 Plasmodium falciparum-infected individuals. The survey results indicate extensive malaria transmission on these bases, especially in Wewak and Vanimo. More intensified interventions are required to reduce malaria transmission on PNG military bases.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Militares , Parasitos , Criança , Adulto , Animais , Humanos , Adolescente , Papua Nova Guiné/epidemiologia , Estudos Transversais , Austrália , Malária/parasitologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Prevalência , Malária Vivax/parasitologia , Malária Falciparum/epidemiologia
9.
Antimicrob Agents Chemother ; 68(4): e0120423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411047

RESUMO

Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , NADPH-Ferri-Hemoproteína Redutase , Cloroquina/farmacologia , Citocromo P-450 CYP2D6/genética , Artemisininas/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Plasmodium vivax/genética
10.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376987

RESUMO

Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium.


Assuntos
Hominidae , Malária , Parasitos , Plasmodium , Animais , Humanos , Plasmodium/genética , Malária/veterinária , Malária/parasitologia , Plasmodium vivax/genética , Plasmodium falciparum/genética , Primatas/genética
11.
Vaccine ; 42(7): 1785-1792, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38365484

RESUMO

Plasmodium vivax malaria is increasingly recognized as a major global health problem and the socio-economic impact of P.vivax-induced burden is huge. Vaccine development against P. vivax malaria has been hampered by the lack of an in vitro culture system and poor access to P. vivax sporozoites. The recent generation of Plasmodium falciparum parasites that express a functional P. vivax AMA1 molecule has provided a platform for in vitro evaluation of PvAMA1 as a potential blood stage vaccine. Three so-called PvAMA1 Diversity Covering (DiCo) proteins were designed to assess their potential to induce a functional and broad humoral immune response to the polymorphic PvAMA1 molecule. Rabbits were immunized with the mixture of three, Pichia-produced, PvAMA1 DiCo proteins, as well as with 2 naturally occurring PvAMA1 alleles. For these three groups, the experimental adjuvant raffinose fatty acid sulfate ester (RFASE) was used, while in a fourth group the purified main mono-esterified constituent (RSL10) of this adjuvant was used. Animals immunized with the mixture of the three PvAMA1 DiCo proteins in RFASE showed high anti-PvAMA1 antibody titers against three naturally occurring PvAMA1variants while also high growth-inhibitory capacity was observed against P. falciparum parasites expressing PvAMA1. This supports further clinical development of the PvAMA1 DiCo mixture as a potential malaria vaccine. However, as the single allele PvAMA1 SalI-group showed similar characteristics in antibody titer and inhibition levels as the PvAMA1 DiCo mixture-group, this raises the question whether a mixture is really necessary to overcome the polymorphism in the vaccine candidate. RFASE induced strong humoral responses, as did the animals immunized with the purified component, RSL10. This suggests that RSL10 is the active ingredient. However, one of the RSL10-immunized animal showed a delayed response, necessitating further research into the clinical development of RSL10.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária Vivax , Parasitos , Animais , Coelhos , Proteínas de Protozoários/genética , Plasmodium vivax , Rafinose , Sulfatos , Proteínas de Membrana/genética , Antígenos de Protozoários/genética , Adjuvantes Imunológicos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Malária Vivax/prevenção & controle , Anticorpos Antiprotozoários
12.
Epidemics ; 46: 100747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330786

RESUMO

In order to evaluate the impact of various intervention strategies on Plasmodium vivax dynamics in low endemicity settings without significant seasonal pattern, we introduce a simple mathematical model that can be easily adapted to reported case numbers similar to that collected by surveillance systems in various countries. The model includes case management, vector control, mass drug administration and reactive case detection interventions and is implemented in both deterministic and stochastic frameworks. It is available as an R package to enable users to calibrate and simulate it with their own data. Although we only illustrate its use on fictitious data, by simulating and comparing the impact of various intervention combinations on malaria risk and burden, this model could be a useful tool for strategic planning, implementation and resource mobilization.


Assuntos
Malária , Plasmodium vivax , Humanos , Malária/tratamento farmacológico , Malária/epidemiologia , Administração Massiva de Medicamentos
13.
Malar J ; 23(1): 49, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360625

RESUMO

BACKGROUND: Over the last decades, the number of malaria cases has drastically reduced in Cambodia. As the overall prevalence of malaria in Cambodia declines, residual malaria transmission becomes increasingly fragmented over smaller remote regions. The aim of this study was to get an insight into the burden and epidemiological parameters of Plasmodium infections on the forest-fringe of Cambodia. METHODS: 950 participants were recruited in the province of Mondulkiri in Cambodia and followed up from 2018 to 2020. Whole-blood samples were processed for Plasmodium spp. identification by PCR as well as for a serological immunoassay. A risk factor analysis was conducted for Plasmodium vivax PCR-detected infections throughout the study, and for P. vivax seropositivity at baseline. To evaluate the predictive effect of seropositivity at baseline on subsequent PCR-positivity, an analysis of P. vivax infection-free survival time stratified by serological status at baseline was performed. RESULTS: Living inside the forest significantly increased the odds of P. vivax PCR-positivity by a factor of 18.3 (95% C.I. 7.7-43.5). Being a male adult was also a significant predictor of PCR-positivity. Similar risk profiles were identified for P. vivax seropositivity. The survival analysis showed that serological status at baseline significantly correlated with subsequent infection. Serology is most informative outside of the forest, where 94.0% (95% C.I. 90.7-97.4%) of seronegative individuals survived infection-free, compared to 32.4% (95% C.I.: 22.6-46.6%) of seropositive individuals. CONCLUSION: This study justifies the need for serological diagnostic assays to target interventions in this region, particularly in demographic groups where a lot of risk heterogeneity persists, such as outside of the forest.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Adulto , Humanos , Masculino , Malária Falciparum/epidemiologia , Plasmodium falciparum , Plasmodium vivax , Camboja/epidemiologia , Incidência , Estudos Transversais , Malária/diagnóstico , Malária/epidemiologia , Malária Vivax/diagnóstico , Malária Vivax/epidemiologia , Florestas
14.
Sci Rep ; 14(1): 3276, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332023

RESUMO

Reports indicate that Plasmodium infections influence methemoglobin levels. However, findings have been inconclusive or have varied across different geographic and demographic contexts. This systematic review and meta-analysis aimed to consolidate existing data regarding the association between Plasmodium infections and alterations in methemoglobin levels related to the severity of the infection. A comprehensive literature search of several databases, including Ovid, ProQuest, Embase, Scopus, MEDLINE, and PubMed, was conducted to identify relevant studies that examined methemoglobin levels in patients with malaria. Qualitative synthesis and meta-analysis of the pooled standardized mean difference were conducted to synthesize the differences in methemoglobin levels between: (1) patients with malaria and those without malaria and (2) patients with severe malaria and those with uncomplicated malaria based on various themes including publication year, study design, study area, Plasmodium species, age group, symptomatic status, severity status, and method of malaria detection. Of the 1846 studies that were initially identified from the main databases and additional searches on Google Scholar, 10 studies met the eligibility criteria and were selected for this review. The systematic review distinctly highlighted an association between malaria and elevated methemoglobin levels, an observation consistent across diverse geographical regions and various Plasmodium species. Furthermore, the meta-analysis confirmed this by demonstrating increased methemoglobin levels in patients with malaria compared to those without malaria (P < 0.001, Hedges' g 2.32, 95% CI 1.36-3.29, I2 97.27, 8 studies). Moreover, the meta-analysis found elevated methemoglobin levels in patients with severe malaria compared to those with uncomplicated malaria (P < 0.001, Hedges' g 2.20, 95% CI 0.82-3.58, I2 96.20, 5 studies). This systematic review and meta-analysis revealed increased methemoglobin levels in patients with P. falciparum and P. vivax infections, with a notable association between elevated methemoglobin levels and severe malaria. Future research should focus on elucidating the specific mechanisms by which changes in methemoglobin levels are related to infections by P. falciparum and P. vivax, particularly in terms of severity, and how these alterations could potentially impact patient management and treatment outcomes.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium , Humanos , Plasmodium falciparum , Plasmodium vivax , Metemoglobina , Malária/complicações , Malária Vivax/complicações , Malária Vivax/epidemiologia , Malária Vivax/diagnóstico , Malária Falciparum/complicações , Gravidade do Paciente
15.
Am J Trop Med Hyg ; 110(3): 444-447, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38350139

RESUMO

Anopheles darlingi is the primary malaria vector in the Amazon region and is highly susceptible to both Plasmodium vivax and Plasmodium falciparum parasites. Although anopheline mosquitoes may develop melanotic encapsulation in response to Plasmodium parasites, there is no record of An. darlingi exhibiting a melanization response to P. vivax, the main malaria parasite in the Americas. Here, we report the occurrence of P. vivax sporozoite melanization in An. darlingi mosquitoes.


Assuntos
Anopheles , Malária Vivax , Malária , Animais , Humanos , Plasmodium vivax , Anopheles/parasitologia , Esporozoítos , Mosquitos Vetores/parasitologia , Glândulas Salivares
16.
Front Immunol ; 15: 1352618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404581

RESUMO

Human malaria, caused by five Plasmodium species (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi), remains a significant global health burden. While most interventions target P. falciparum, the species associated with high mortality rates and severe clinical symptoms, non-falciparum species exhibit different transmission dynamics, remain hugely neglected, and pose a significant challenge to malaria elimination efforts. Recent studies have reported the presence of antigens associated with cross-protective immunity, which can potentially disrupt the transmission of various Plasmodium species. With the sequencing of the Plasmodium genome and the development of immunoinformatic tools, in this study, we sought to exploit the evolutionary history of Plasmodium species to identify conserved cross-species B-cell linear epitopes in merozoite proteins. We retrieved Plasmodium proteomes associated with human malaria and applied a subtractive proteomics approach focusing on merozoite stage proteins. Bepipred 2.0 and Epidope were used to predict B-cell linear epitopes using P. falciparum as the reference species. The predictions were further compared against human and non-falciparum databases and their antigenicity, toxicity, and allergenicity assessed. Subsequently, epitope conservation was carried out using locally sequenced P. falciparum isolates from a malaria-endemic region in western Kenya (n=27) and Kenyan isolates from MalariaGEN version 6 (n=131). Finally, physiochemical characteristics and tertiary structure of the B-cell linear epitopes were determined. The analysis revealed eight epitopes that showed high similarity (70-100%) between falciparum and non-falciparum species. These epitopes were highly conserved when assessed across local isolates and those from the MalariaGEN database and showed desirable physiochemical properties. Our results show the presence of conserved cross-species B-cell linear epitopes that could aid in targeting multiple Plasmodium species. Nevertheless, validating their efficacy in-vitro and in-vivo experimentally is essential.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium , Animais , Humanos , Merozoítos , Epitopos de Linfócito B , Quênia , Proteômica , Plasmodium falciparum , Plasmodium vivax , Malária/diagnóstico
17.
Malar J ; 23(1): 55, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395885

RESUMO

BACKGROUND: Plasmodium vivax Duffy binding protein (PvDBP) is a merozoite surface protein located in the micronemes of P. vivax. The invasion of human reticulocytes by P. vivax merozoites depends on the parasite DBP binding domain engaging Duffy Antigen Receptor for Chemokine (DARC) on these red blood cells (RBCs). PvDBPII shows high genetic diversity which is a major challenge to its use in the development of a vaccine against vivax malaria. METHODS: A cross-sectional study was conducted from February 2021 to September 2022 in five study sites across Ethiopia. A total of 58 blood samples confirmed positive for P. vivax by polymerase chain reaction (PCR) were included in the study to determine PvDBPII genetic diversity. PvDBPII were amplified using primers designed from reference sequence of P. vivax Sal I strain. Assembling of sequences was done using Geneious Prime version 2023.2.1. Alignment and phylogenetic tree constructions using MEGA version 10.1.1. Nucleotide diversity and haplotype diversity were analysed using DnaSP version 6.12.03, and haplotype network was generated with PopART version 1.7. RESULTS: The mean age of the participants was 25 years, 5 (8.6%) participants were Duffy negatives. From the 58 PvDBPII sequences, seven haplotypes based on nucleotide differences at 8 positions were identified. Nucleotide diversity and haplotype diversity were 0.00267 ± 0.00023 and 0.731 ± 0.036, respectively. Among the five study sites, the highest numbers of haplotypes were identified in Arbaminch with six different haplotypes while only two haplotypes were identified in Gambella. The phylogenetic tree based on PvDBPII revealed that parasites of different study sites shared similar genetic clusters with few exceptions. Globally, a total of 39 haplotypes were identified from 223 PvDBPII sequences representing different geographical isolates obtained from NCBI archive. The nucleotide and haplotype diversity were 0.00373 and 0.845 ± 0.015, respectively. The haplotype prevalence ranged from 0.45% to 27.3%. Two haplotypes were shared among isolates from all geographical areas of the globe. CONCLUSIONS: PvDBPII of the Ethiopian P. vivax isolates showed low nucleotide but high haplotype diversity, this pattern of genetic variability suggests that the population may have undergone a recent expansion. Among the Ethiopian P. vivax isolates, almost half of the sequences were identical to the Sal-I reference sequence. However, there were unique haplotypes observed in the Ethiopian isolates, which does not share with isolates from other geographical areas. There were two haplotypes that were common among populations across the globe. Categorizing population haplotype frequency can help to determine common haplotypes for designing an effective blood-stage vaccine which will have a significant role for the control and elimination of P. vivax.


Assuntos
Malária Vivax , Vacinas , Humanos , Adulto , Plasmodium vivax , Filogenia , Etiópia/epidemiologia , Estudos Transversais , Seleção Genética , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Malária Vivax/parasitologia , Haplótipos , Nucleotídeos , Variação Genética
18.
Malar J ; 23(1): 56, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395925

RESUMO

BACKGROUND: Cambodia aims to eliminate all forms of malaria by 2025. In 2020, 90% of all malaria cases were Plasmodium vivax. Thus, preventing P. vivax and relapse malaria is a top priority for elimination. 14-day primaquine, a World Health Organization-recommended radical cure treatment regimen, specifically targets dormant hypnozoites in the liver to prevent relapse. Cambodia introduced P. vivax radical cure with primaquine after glucose-6-phosphate dehydrogenase (G6PD) qualitative testing in 2019. This paper presents Cambodia's radical cure Phase I implementation results and assesses the safety, effectiveness, and feasibility of the programme prior to nationwide scale up. METHODS: Phase I implementation was carried out in 88 select health facilities (HFs) across four provinces. Males over 20kgs with confirmed P. vivax or mixed (P. vivax and Plasmodium falciparum) infections were enrolled. A descriptive analysis evaluated the following: successful referral to health facilities, G6PD testing results, and self-reported 14-day treatment adherence. P. vivax incidence was compared before and after radical cure rollout and a controlled interrupted time series analysis compared the estimated relapse rate between implementation and non-implementation provinces before and after radical cure. RESULTS: In the 4 provinces from November 2019 to December 2020, 3,239 P. vivax/mixed infections were reported, 1,282 patients underwent G6PD deficiency testing, and 959 patients received radical cure, achieving 29.6% radical cure coverage among all P. vivax/mixed cases and 98.8% coverage among G6PD normal patients. Among those who initiated radical cure, 747 patients (78%) completed treatment. Six patients reported side effects. In implementation provinces, an average 31.8 relapse cases per month were estimated signaling a 90% (286 cases) reduction in relapse compared to what would be expected if radical cure was not implemented. CONCLUSIONS: Plasmodium vivax radical cure is a crucial tool for malaria elimination in Cambodia. The high coverage of radical cure initiation and adherence among G6PD normal patients demonstrated the high feasibility of providing radical cure at point of care in Cambodia. Incomplete referral from community to HFs and limited capacity of HF staff to conduct G6PD testing in high burden areas led to lower coverage of G6PD testing. Phase I implementation informed approaches to improve referral completion and patient adherence during the nationwide expansion of radical cure in 2021.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Malária , Masculino , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Primaquina/uso terapêutico , Antimaláricos/uso terapêutico , Glucosefosfato Desidrogenase , Camboja/epidemiologia , Malária/tratamento farmacológico , Plasmodium vivax , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Recidiva
19.
Lancet Glob Health ; 12(3): e467-e477, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365417

RESUMO

BACKGROUND: To achieve malaria elimination, Brazil must implement Plasmodium vivax radical cure. We aimed to investigate the operational feasibility of point-of-care, quantitative, glucose-6-phosphate dehydrogenase (G6PD) testing followed by chloroquine plus tafenoquine or primaquine. METHODS: This non-interventional, observational study was done at 43 health facilities in Manaus (Amazonas State) and Porto Velho (Rondônia State), Brazil, implementing a new P vivax treatment algorithm incorporating point-of-care quantitative G6PD testing to identify G6PD status and single-dose tafenoquine (G6PD normal, aged ≥16 years, and not pregnant or breastfeeding) or primaquine (intermediate or normal G6PD, aged ≥6 months, not pregnant, or breastfeeding >1 month). Following training of health-care providers, we collated routine patient records from the malaria epidemiological surveillance system (SIVEP-Malaria) retrospectively for all consenting patients aged at least 6 months with parasitologically confirmed P vivax malaria mono-infection or P vivax plus P falciparum mixed infection, presenting between Sept 9, 2021, and Aug 31, 2022. The primary endpoint was the proportion of patients aged at least 16 years with P vivax mono-infection treated or not treated appropriately with tafenoquine in accordance with their G6PD status. The trial is registered with ClinicalTrials.gov, NCT05096702, and is completed. FINDINGS: Of 6075 patients enrolled, 6026 (99·2%) had P vivax mono-infection, 2685 (44·6%) of whom were administered tafenoquine. G6PD status was identified in 2685 (100%) of 2685 patients treated with tafenoquine. The proportion of patients aged at least 16 years with P vivax mono-infection who were treated or not treated appropriately with tafenoquine in accordance with their G6PD status was 99·7% (95% CI 99·4-99·8; 4664/4680). INTERPRETATION: Quantitative G6PD testing before tafenoquine administration was operationally feasible, with high adherence to the treatment algorithm, supporting deployment throughout the Brazilian health system. FUNDING: Brazilian Ministry of Health, Municipal and State Health Secretariats; Fiocruz; Medicines for Malaria Venture; Bill & Melinda Gates Foundation; Newcrest Mining; and the UK Government. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Assuntos
Aminoquinolinas , Antimaláricos , Malária Vivax , Feminino , Humanos , Gravidez , Antimaláricos/uso terapêutico , Brasil , Estudos de Viabilidade , Glucosefosfato Desidrogenase/análise , Malária Vivax/tratamento farmacológico , Plasmodium vivax , Sistemas Automatizados de Assistência Junto ao Leito , Primaquina/uso terapêutico , Estudos Retrospectivos
20.
Sci Rep ; 14(1): 2806, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307878

RESUMO

Despite progress towards malaria reduction in Peru, measuring exposure in low transmission areas is crucial for achieving elimination. This study focuses on two very low transmission areas in Loreto (Peruvian Amazon) and aims to determine the relationship between malaria exposure and proximity to health facilities. Individual data was collected from 38 villages in Indiana and Belen, including geo-referenced households and blood samples for microscopy, PCR and serological analysis. A segmented linear regression model identified significant changes in seropositivity trends among different age groups. Local Getis-Ord Gi* statistic revealed clusters of households with high (hotspots) or low (coldspots) seropositivity rates. Findings from 4000 individuals showed a seropositivity level of 2.5% (95%CI: 2.0%-3.0%) for P. falciparum and 7.8% (95%CI: 7.0%-8.7%) for P. vivax, indicating recent or historical exposure. The segmented regression showed exposure reductions in the 40-50 age group (ß1 = 0.043, p = 0.003) for P. vivax and the 50-60 age group (ß1 = 0.005, p = 0.010) for P. falciparum. Long and extreme distance villages from Regional Hospital of Loreto exhibited higher malaria exposure compared to proximate and medium distance villages (p < 0.001). This study showed the seropositivity of malaria in two very low transmission areas and confirmed the spatial pattern of hotspots as villages become more distant.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Peru/epidemiologia , Plasmodium falciparum , Plasmodium vivax , Estudos Soroepidemiológicos , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...